非光滑凸损失的随机梯度下降稳定性
我们为随机梯度下降(SGD)建立了数据相关的算法稳定性概念,并利用它来开发新的泛化界限;我们的结果表明,在凸和非凸问题中,预筛选初始化是稳定SGD的一种简单数据驱动策略,并允许我们展示出乐观的泛化界限。
Mar, 2017
本文探讨了深度学习模型的一种优化方法——随机梯度下降在泛化能力上的稳定性,提出了一种基于梯度方差的稳定性指标,并在此基础上分别分析了常规非凸损失函数、梯度主导性损失函数和带强凸规则化器的问题,得到了一系列改进的泛化误差界。
Feb, 2018
本文提供了一种算法——随机梯度下降的稳定性和泛化性的细致分析,通过消除梯度有界性、减轻光滑性和凸性函数的限制,提出了新的稳定性度量,并开发了受 SGD 迭代的风险控制的新型约束,给出了受最佳模型行为影响的泛化范围,从而在低噪声环境下使用稳定性方法得到了第一个快速上界。
Jun, 2020
本研究研究了随机梯度下降(SGD)这种普遍使用的随机优化方法的泛化特性,提供了依赖于在 SGD 计算的迭代路径上评估的随机梯度的本地统计信息的泛化误差的理论上限,其关键因素是梯度的方差及目标函数沿 SGD 路径的局部光滑性以及损失函数对最终输出的扰动敏感度和信息理论泛化界限等。
Feb, 2021
本论文提出了分散化随机梯度下降法的新方法,并使用(非)凸优化理论建立了第一个针对分散化随机梯度下降法的稳定性和泛化保证。我们的理论结果基于少数常见且温和的假设,并揭示分散化将首次降低SGD的稳定性。通过使用多种分散化设置和基准机器学习模型,证实了我们的理论发现。
Feb, 2021
本文研究了随机梯度下降方法在训练大规模机器学习模型中的应用,分析了损失函数和数据分布对其泛化性能的影响,提出了改进的数据相关的上界和下降算法来进一步了解深度网络的泛化能力。
Feb, 2021
本文针对非凸非光滑问题提出新的算法稳定性度量方法,同时建立它们与梯度之间的量化关系,并使用采样确定算法导出了随机梯度下降算法和其自适应变种的误差界。
Jun, 2022
通过将学习理论与应用概率联系起来,引入了一种新的方法来证明随机优化算法的Wasserstein稳定性边界,并在强凸损失和带有附加噪声的非凸损失的情况下获得了时间均匀稳定性边界,其不随迭代次数增加而增加,并且证明了Lyapunov函数的重要性。
May, 2023
本文提出 Decentralized Stochastic Gradient Descent 算法的泛化误差分析,并据此证明在凸设置下,不论选择哪种通信图,D-SGD算法的泛化界限与经典SGD算法相同,即前人论述的通信图对泛化的不利影响并不成立。
Jun, 2023
我们研究了分布式随机梯度上升下降(D-SGDA)算法的原始-对偶广义界限,通过算法稳定性方法,在凸凹和非凸非凹环境下对分布式最小最大算法的广义界限进行了改进。我们的理论研究表明,分布式结构不会破坏D-SGDA的稳定性和广义化能力,在某些情况下可以实现和普通SGDA相同的广义化能力。此外,我们还评估了凸凹设定下D-SGDA算法的优化误差,并将其与广义间隙相平衡,以获得最佳的总体风险。最后,我们进行了多项数值实验来验证我们的理论发现。
Oct, 2023