旋转不变补全网络
本文提出了一种新的基于学习的方法——Point Completion Network(PCN),该方法直接在原始点云上操作而不需要任何结构假设或注释,并且其解码器设计可以在保持参数数量较小的同时生成精细的完整点云。实验结果表明,PCN 在处理各种不完整和噪声的输入时可以产生密集、完整、具有现实结构的点云。
Aug, 2018
本文介绍了一种新的方法来实现点云数据的旋转不变性,使用局部几何特征和全局拓扑特征相结合的局部-全局表示网络。该网络使用多层感知器做注意力机制来融合两种旋转不变性特征,并在模型识别任务上取得了最先进的效果。
Nov, 2019
本文提出了一种新的低层纯旋转不变表示,以替代常见的3D笛卡尔坐标作为神经网络的输入,并介绍了一种网络结构来将这些表示嵌入为特征,编码点与邻居之间以及全局形状结构之间的局部关系,并通过区域关系卷积来编码局部和非局部信息以缓解因旋转不变表示引起的全局信息丢失。在多个点云分析任务上评估我们的方法,包括形状分类、部件分割和形状检索,实验结果表明与现有技术相比,我们的方法在任意方向上的输入上实现了一致且最佳的性能。
Mar, 2020
提出了一种级联细化网络结合粗到细的策略,通过考虑局部输入的细节和全局形状信息,保留了不完整点集中的现有细节,生成高保真度的缺失部分,并设计了一个补丁鉴别器来学习复杂的点分布,实验结果表明在 3D 点云完成任务中,我们的方法优于现有最先进的方法。
Apr, 2020
本研究提出了一种名为GRNet的新方法,以3D网格为中间表示形式,通过保留结构和上下文信息来完善不完整的3D点云,并采用新的梯度损失函数来计算预测和真实点云之间的L1距离,实验结果表明这种方法在多个基准测试中表现优秀。
Jun, 2020
提出了一种基于两个分支的神经网络,用于点云的完形填充,其中第一个分支是连锁的对象完形子网络,第二个分支是一个自编码器,共同利用局部输入和粗糙输出来保留对象细节,并使用相同的特征提取器学习形状完形的全局特征,实验结果表明,该方法在点云完形填充任务上的效果超越了现有技术的方法。
Oct, 2020
本文提出了一种基于变分框架的点云重建方法(Variational Relational point Completion network - VRCNet),该方法采用了概率建模和关系增强技术实现点云的精细局部重建,同时给出了一个包含10万多个高质量扫描的多视角局部点云数据集(MVP数据集),实验证明VRCNet在标准点云重建基准上的性能优于目前的最先进方法,并且在真实世界点云扫描中表现出了很好的泛化性和鲁棒性。
Apr, 2021
我们提出了一种新的卷积算子,用于点云完成的任务。我们的方法的一个显著特点是与相关工作相反,它不需要任何最大池化或体素化操作。我们的算子不断提取具有置换不变性的特征,以保留细粒度的几何细节,通过对特征激活的软池化,从而学习编码器中的点云嵌入。通过特定设计的跳跃连接,将对应层之间的链接建立在编码器和解码器之间,以克服这类结构常见的限制,同时在点云完成任务中达到了最佳性能。
May, 2022
本文提出了一种基于变分关系点补全网络(VRCNet)的框架,采用概率建模和关系增强技术,实现对不完整点云进行准确重建,并达到对部分点云进行3D分类和模型识别的目的。
Apr, 2023
基于Mamba框架的3DMambaComplete网络通过Hyperpoints的选择、分布和形变实现点云完整性,超过了其他点云完整性方法,经定性和定量分析证实。
Apr, 2024